Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(536 KB)

Title: Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time

Author: Tobin, Patrick C.

Date: 2004

Source: Ecography. 27: 767-775.

Publication Series: Scientific Journal (JRNL)

Description: The estimation of spatial autocorrelation in spatially- and temporally-referenced data is fundamental to understanding an organism's population biology. I used four sets of census field data, and developed an idealized space-time dynamic system, to study the behavior of spatial autocorrelation estimates when a practical method of sampling is employed. Estimates were made using both a classical geostatistical approach and a recently developed non-parametric approach. In field data, the estimate of the local spatial autocorrelation (i.e. autocorrelation as the distance between pairs of sampling points approaches 0), was greatly affected by sample size, while the range of spatial dependence (i.e. the distance at which the autocorrelation becomes negligible) was fairly stable. Similar patterns were seen in the theoretical system, as well as greater variability in local spatial autocorrelation during the invasion stage of colonization. When sampling for the purposes of quantifying spatial patterns, improved estimates of spatial autocorrelation may be obtained by increasing the number of pairs of points that are close in space at the expense of attempting to cover the entire region of interest with equidistant sampling points. Also, results from the theoretical space-time system suggested that greater resolution in sampling may be required in newly establishing populations relative to those already established.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Tobin, Patrick C. 2004. Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time. Ecography. 27: 767-775.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.