Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(649 KB)

Title: Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire

Author: Pardo, L.H.; Hemond, H.F.; Montoya, J.P.; Pett-Ridge, J.

Date: 2007

Source: Forest Ecology and Management. 251: 217-230.

Publication Series: Journal/Magazine Article (JRNL)

Description: Stable isotopes of nitrogen are potentially a valuable tool for regional assessments of nitrogen saturation because they provide an integrated measure of the past nitrogen cycling history of a site. We measured δ15N of soil and litter, as well as net nitrification potential, at three sites across a nitrate-loss gradient in the White Mountains, New Hampshire to test the hypotheses: (1) that δ15N in soil and litter increase across a spatial gradient of nitrate loss; and (2) that δ15N in soil and litter is elevated when nitrification is elevated. δ15N was found not to vary significantly among the three sites. Patterns of leaf litter and forest floor δ15N, however, were strongly influenced by species composition in individual plots. Beech litter had significantly higher δ15N than yellow birch, sugar maple, and red maple. The conifer-dominated plots had significantly lower δ15N in both the organic soil horizons and in litter than did the hardwood-dominated plots. When we adjusted for spatial heterogeneity in mineral soil δ15N values by using an enrichment factor, δ15Nfoliar - δ15NBs, in place of absolute soil δ15N values, a positive relationship was found with net nitrification for hardwoods. δ15N may also be a useful tool for evaluating species differences in nitrogen cycling and nitrogen uptake. The distinct pattern we observed of decreasing d15N across the continuum from hardwood-dominated to conifer-dominated sites may suggest that local drivers (for example, nitrification rate) regulate the absolute value of foliar δ15N, while species-driven factors (e.g., timing and type of uptake) control the foliar δ15N value of one species relative to another in the same plot.

Keywords: nitrogen cycling, N saturation, Species patterns

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Pardo, L.H.; Hemond, H.F.; Montoya, J.P.; Pett-Ridge, J. 2007. Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. Forest Ecology and Management. 251: 217-230.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.