Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.5 MB)

Title: Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau

Author: Luo, Tianxiang; Luo, Ji; Pan, Yude

Date: 2005

Source: Oecologia 142:261-273

Publication Series: Journal/Magazine Article (JRNL)

Description: Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species and the associated stand foliage N-pool, leaf area index (LAI), root biomass, aboveground biomass, net primary productivity (NPP) and soil available-N content in six undisturbed forest plots along subtropical to timberline gradlents on the eastern slope of the Gongga Mountains. We developed a methodology to calculate the whole-canopy mean leaf traits to include all tree species (groups) in each of the six plots through a series of weighted averages scaled up from leaf-level measurements. These defined whole-canopy mean leaf traits were equivalent to the traits of a leaf in regard to their interrelationships and altitudinal trends, but were more useful for large-scale pattern analysis of ecosystem structure and function. The whole-canopy mean leaf lifespan and leaf Nmass mainly showed significant relationships with stand foliage N-pool, NPP, LA1 and root biomass. In general, as elevation increased, the whole-canopy mean leaf lifespan and leaf Narea and stand LAI and foliage N-pool increased to their maximum, whereas the whole-canopy mean SLA and leaf Nmass and stand NPP and root biomass decreased from their maximum. The whole-canopy mean leaf lifespan and stand foliage N-pool both converged towards threshold-like logistic relationships with annual mean temperature and soil available-N variables. Our results are further supported by additional literature data in the Americas and eastern China.

Keywords: Altitudinal patterns, Leaves, Tree canopies, Communities, Scaling-up

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Luo, Tianxiang; Luo, Ji; Pan, Yude 2005. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia 142:261-273

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.