Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1,009 KB)

Title: Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

Author: Magnussen, Steen; McRoberts, Ronald E.; Tomppo, Erkki O.

Date: 2009

Source: Remote Sensing of Environment. 113: 476-488.

Publication Series: Journal/Magazine Article (JRNL)

Description: New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated estimates of the variance of Y. Three case studies, with data from the Forest Inventory and Analysis program of the U.S. Forest Service, the Finnish National Forest Inventory, and Landsat ETM+ ancillary data, demonstrate applications of the proposed estimators. Nearly unbiased knn predictions of three forest attributes were obtained. Estimates of mean square error indicate that knn is an attractive technique for integrating remotely-sensed and ground data for the provision of forest attribute maps and areal predictions.

Keywords: small area estimation, spatial prediction, non-parametric, single index model, variance function, spatial correlation function, forest inventory

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Magnussen, Steen; McRoberts, Ronald E.; Tomppo, Erkki O. 2009. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sensing of Environment. 113: 476-488.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.