Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(349 KB)

Title: An inverse method to estimate stem surface heat flux in wildland fires

Author: Bova, Anthony S.; Dickinson, Matthew B.

Date: 2009

Source: International Journal of Wildland Fire. 18: 711-721.

Publication Series: Scientific Journal (JRNL)

Description: Models of wildland fire-induced stem heating and tissue necrosis require accurate estimates of inward heat flux at the bark surface. Thermocouple probes or heat flux sensors placed at a stem surface do not mimic the thermal response of tree bark to flames.We show that data from thin thermocouple probes inserted just below the bark can be used, by means of a one-dimensional inverse heat conduction method, to estimate net heat flux (inward minus outward heat flow) and temperature at the bark surface. Further, we estimate outward heat flux from emitted water vapor and bark surface re-radiation. Estimates of surface heat flux and temperature made by the inverse method confirm that surface-mounted heat flux sensors and thermocouple probes overestimate surface heat flux and temperature. As a demonstration of the utility of the method, we characterized uneven stem heating, due to leeward, flame-driven vortices, in a prescribed surface fire. Advantages of using an inverse method include lower cost, ease of multipoint measurements and negligible effects on the target stem. Drawbacks of the simple inverse model described herein include inability to estimate heat flux in very moist bark and uncertainty in estimates when extensive charring occurs.

Keywords: heat transfer, mass flux, modeling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Bova, Anthony S.; Dickinson, Matthew B. 2009. An inverse method to estimate stem surface heat flux in wildland fires. International Journal of Wildland Fire. 18: 711-721.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.