Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(884 KB)

Title: Estimating the probability of mountain pine beetle red-attack damage

Author: Wulder, Michael A; White, J. C.; Bentz, Barbara J; Alvarez, M. F.; Coops, N. C.

Date: 2006

Source: Remote Sensing of Environment. 101(2): 150-166

Publication Series: Journal/Magazine Article (JRNL)

Description: Accurate spatial information on the location and extent of mountain pine beetle infestation is critical for the planning of mitigation and treatment activities. Areas of mixed forest and variable terrain present unique challenges for the detection and mapping of mountain pine beetle red-attack damage, as red-attack has a more heterogeneous distribution under these conditions. In this study, mountain pine beetle red-attack damage was detected and mapped using a logistic regression approach with a forward stepwise selection process and a set of calibration data representing samples of red-attack and non-attack from the study area. Variables that were considered for inclusion in the model were the enhanced wetness difference index (EWDI) derived from a time series of Landsat remotely sensed imagery, elevation, slope, and solar radiation (direct, diffuse, and global). The output from the logistic regression was a continuous probability surface, which indicated the likelihood of red-attack damage. Independent validation data were used to assess the accuracy of the resulting models. The final model predicted red-attack damage with an accuracy of 86%. These results indicate that for this particular site, with mixed forest stands and variable terrain, remotely sensed and ancillary spatial data can be combined, through logistic regression, to create a mountain pine beetle red-attack likelihood surface that accurately identifies damaged forest stands. The use of a probabilistic approach reduces dependence upon the definition of change by the application of thresholds (upper and lower bounds of change) at the image processing stage. Rather, a change layer is generated that may be interpreted liberally or conservatively, depending on the information needs of the end user.

Keywords: forest, mountain pine beetle, logistic regression, Landsat, tasseled cap, change detection

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Wulder, Michael A; White, J. C.; Bentz, Barbara J; Alvarez, M. F.; Coops, N. C. 2006. Estimating the probability of mountain pine beetle red-attack damage. Remote Sensing of Environment. 101(2): 150-166

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.