Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.4 MB bytes)

Title: Estimating forest canopy fuel parameters using LIDAR data.

Author: Andersen, Hans-Erik; McGaughey, Robert J.; Reutebuch, Stephen E.

Date: 2005

Source: Remote Sensing of Environment. 94: 441-449

Publication Series: Miscellaneous Publication

Description: Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to accurately map the spatial distribution of canopy fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this study, regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State. Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown fuel weight): R2=0.88; ln(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98]. A cross-validation procedure was used to assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy fuel parameters over forest areas in the Pacific Northwest.

Keywords: airborne laser scanning, canopy fuels, remote sensing, forestry, mapping

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Andersen, Hans-Erik; McGaughey, Robert J.; Reutebuch, Stephen E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment. 94: 441-449

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.