Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(901 KB bytes)

Title: Surface modification of lignocellulosic fibers using high-frequency ultrasound

Author: Gadhe, Jayant B.; Gupta, Ram B.; Elder, Thomas

Date: 2005

Source: Cellulose, Vol. 19: 9-22

Publication Series: Not categorized

Description: Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to sonicate the aqueous suspensions of thermomechanical pulp fibers (TMP). TMP is analyzed using FTIR-transmission, FTIR-ATR spectroscopy and inverse gas chromatography (IGC). The non-conjugated carbonyl groups in TMP are represented by the peak area ratio A1736/A1511 in the FTIR-transmission spectra and by A1728/A1509 in the FTIR-ATR spectra. The increase in these ratios suggests that there is an increase in the number of non-conjugated carbonyl groups in TMP after sonication. To further investigate, sonication of the hydrolytic lignin was also carried out and analyzed using UV, UV-ionization and FTIR-transmission spectroscopy. The changes in the surface properties of the fibers are analyzed using IGC which showed an increase in the surface free energy of fibers. The effect of operating parameters such as power of ultrasound and sonication time is also studied.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Gadhe, Jayant B.; Gupta, Ram B.; Elder, Thomas 2005. Surface modification of lignocellulosic fibers using high-frequency ultrasound. Cellulose, Vol. 19: 9-22

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.