Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(939 KB bytes)

Title: Stream nitrogen responses to fire in the Southeastern U.S.

Author: Vose, James M.; Laseter, Stephanie H.; McNulty, Steve G.

Date: 2005

Source: In: 3rd International Nitrogen Conference, Contributed Papers: 577-584

Publication Series: Miscellaneous Publication

Description: Fire can play a significant role in runoff, sediment yield, and nitrate transport in aquatic and terrestrial ecosystems in the southeast US. The typical impact of fire is an immediate change in the physical properties of the soil and forest floor surface, followed by mid- and long-term changes in biological pools and cycling processes. Depending upon the severity of the fire and pre-burn conditions, there is a potential for wildfire and prescribed burns to pose risks within the regions to water quality. There has been little effort to specifically model the effects of prescribed burning and wildfire on forest hydrology. Our approach was to combine field measurements and modeling to quantify the impacts of fire on water quality and hydrology in two sites characteristics of the mountain and piedmont regions of the southeastern US. we used the nutrient cycling model NuCM (Nutrient Cycling Model) as our platform for predicting ecosystem nitrogen response. Study sites were located in the Nantahala National Forest in the southern Appalachians and the Uwharrie National Forest in the piedmont region. Portal automated samplers were installed to sample stream water N; and soil solution lysimeters and overland flow collectors were installed to sample surface vs. subsurface N. We focused inorganic nitrogen (NO3-N, NH4-N) in soil solution and streams draining the burned areas because they are key indicators of ecosystem response to disturbance and important water quality parameters. The Nantahala and Uwharrie sites were burned 7 and 5 months (Respectively) after sampling began. NuCM was parameterized and calibrated with pre- and post-burn data from the Nantahala and Uwharrie sites. In addition, more severe and intense prescribed fires and wildfire scenarios were modeled by increasing fire effects on parameters that are directly or indirectly altered by fire. In general, both stream NO3-N and stream NH4-N concentrations were unaffected by prescribed fire at any level of intensity or severity. Slight increases in stream and soil solution NO3-N concentration were observed under the wildfire scenario, but responses were well below levels of concern for aquatic resources and drinking water.

Keywords: fire effects, water quality, nitrate, ammonium

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Vose, James M.; Laseter, Stephanie H.; McNulty, Steve G. 2005. Stream nitrogen responses to fire in the Southeastern U.S. In: 3rd International Nitrogen Conference, Contributed Papers: 577-584

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.