Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.09 MB bytes)

Title: Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

Author: Wallenstein, Matthew D.; McNulty, Steven; Fernandez, Ivan J.; Boggs, Johnny; Schlesinger, William H.

Date: 2006

Source: Forest Ecology and Management, Vol. 222: 459-468

Publication Series: Miscellaneous Publication

Description: We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an average of 45% in hardwood stands. In the pine stand, organic soil MBC was decreased by 40% and SIR decreased by an average of 35%. The fungal:bacterial activity ratio was also decreased in the hardwood stands from an average of 1.5 in the control plot to I .O in the High-N plot, and in the pine stands from 1.9 in control plot to 1.0 in the High-N stand. At Mt. Ascutney, MBC was reduced by an average of 59% and SIR by 52% in the High N plots relative to the unfertilized plots, and the fungal:bacterial activity ratio was only slightly decreased. The Bear Brook watershed is in an earlier stage of N saturation (Stage 0-1) and did not exhibit significant fertilization effects on microbial biomass. Across all three sites, MBC and SIR had negative relationships with total N inputs in both mineral soils and organic soils, though the effect was much stronger in organic soils. Both MBC and SIR were positively correlated with dissolved organic C, total soil C, and bulk soil C:N ratios. These results are consistent with the N saturation hypothesis, but do not indicate a strong role for microbial N immobilization in preventing N loss.

Keywords: Nitrogen fertilization, microbial biomass, nitrogen saturation, selective inhibition

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Wallenstein, Matthew D.; McNulty, Steven; Fernandez, Ivan J.; Boggs, Johnny; Schlesinger, William H. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, Vol. 222: 459-468

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.