Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.7 MB)

Title: Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height.

Author: Hudak, Andrew T.; Lefsky, Michael A.; Cohen, Warren B.; Berterretche, Mercedes

Date: 2002

Source: Remote Sensing of Environment. 82(2-3): 397-416.

Publication Series: Scientific Journal (JRNL)

Description: Light detection and ranging (LIDAR) data provide accurate measurements of forest canopy structure in the vertical plane; however, current LIDAR sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in the horizontal plane but are relatively insensitive to variation in forest canopy height. It would, therefore, be desirable to integrate LIDAR and Landsat data to improve the measurement, mapping, and monitoring of forest structural attributes. We tested five aspatial and spatial methods for predicting canopy height, using an airborne LIDAR system (Aeroscan) and Landsat Enhanced Thematic Mapper (ETM+) data: regression, kriging, cokriging, and kriging and cokriging of regression residuals. Our 200-km2 study area in western Oregon encompassed Oregon State University's McDonald­Dunn Research Forest, which is broadly representative of the age and structural classes common in the region. We sampled a spatially continuous LIDAR coverage in eight systematic patterns to determine which LIDAR sampling strategy would optimize LIDAR Landsat integration in western Oregon forests: transects sampled at 2000, 1000, 500, and 250 m frequencies, and points sampled at these same spatial frequencies. The aspatial regression model results, regardless of sampling strategy, preserved actual vegetation pattern, but underestimated taller canopies and overestimated shorter canopies. The spatial models, kriging and cokriging, produced less biased results than regression but poorly reproduced vegetation pattern, especially at the sparser (2000 and 1000 m) sampling frequencies. The spatial model predictions were more accurate than the regression model predictions at locations < 200 m from sample locations. Cokriging, using the ETM+ panchromatic band as the secondary variable, proved slightly more accurate than kriging. The integrated models that kriged or cokriged regression residuals were preferable to either the aspatial or spatial models alone because they preserved the vegetation pattern like regression yet improved estimation accuracies above those predicted from the regression models alone. The 250-m point sampling strategy proved most optimal because it oversampled the landscape relative to the geostatistical range of actual spatial variation, as indicated by the sample semivariograms, while making the sample data volume more manageable. We concluded that an integrated modeling strategy is most suitable for estimating and mapping canopy height at locations unsampled by LIDAR, and that a 250-m discrete point sampling strategy most efficiently samples an intensively managed forested landscape in western Oregon.

Keywords: Landsat ETM+ data, light detection and ranging (LIDAR) data, forest canopy structure, Oregon

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hudak, Andrew T.; Lefsky, Michael A.; Cohen, Warren B.; Berterretche, Mercedes 2002. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment. 82(2-3): 397-416.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.