Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(788 KB)

Title: Chemical changes induced by pH manipulations of volcanic ash-influenced soils

Author: Page-Dumroese, Deborah; Ferguson, Dennis; McDaniel, Paul; Johnson-Maynard, Jodi

Date: 2007

Source: In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d'Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 185-202.

Publication Series: Proceedings (P)

   Note: This article is part of a larger document. View the larger document

Description: Data from volcanic ash-influenced soils indicates that soil pH may change by as much as 3 units during a year. The effects of these changes on soil chemical properties are not well understood. Our study examined soil chemical changes after artificially altering soil pH of ash-influenced soils in a laboratory. Soil from the surface (0-5 cm) and subsurface (10-15 cm) mineral horizons were collected from two National Forests in northern Idaho. Soil collections were made from two undisturbed forest stands, a partial cut, a natural bracken fern (Pteridium aquilinum [L.] Kuhn) glade, an approximately 30-yearold clearcut invaded with bracken fern, and a 21-year-old clearcut invaded with western coneflower (Rudbeckia occidentalis Nutt.). Either elemental sulfur (S) or calcium hydroxide (Ca(OH)2) were added to the soil to manipulate pH. After 90 days of incubation, pH ranged from 3.6 to 6.1 for both National Forests and all stand conditions. Total C, total N, and extractable base cations (Ca, Mg, and K) were generally unaffected by pH change. Available P increased as pH dropped below 4.5 for both depths and all soil types. Nitrate was highest at pH values greater than 5.0 and decreased as pH decreased indicating that nitrification is inhibited at lower pH. Contrary to nitrate, potentially mineralizable N increased as pH declined. Total acidity and exchangeable aluminum increased exponentially as pH decreased, especially in the uncut and partial cut stands. Data from this laboratory study provides information on the role of pH in determining the availability of nutrients in ash-cap soils.

Keywords: volcanic ash-cap soils, pH manipulations

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Page-Dumroese, Deborah; Ferguson, Dennis; McDaniel, Paul; Johnson-Maynard, Jodi 2007. Chemical changes induced by pH manipulations of volcanic ash-influenced soils. In: Page-Dumroese, Deborah; Miller, Richard; Mital, Jim; McDaniel, Paul; Miller, Dan, tech. eds. 2007. Volcanic-Ash-Derived Forest Soils of the Inland Northwest: Properties and Implications for Management and Restoration. 9-10 November 2005; Coeur d'Alene, ID. Proceedings RMRS-P-44; Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. 185-202.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.