Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(630 K bytes)

Title: The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

Author: Hyvönen, Riitta; Ågren, Göran I.; Linder, Sune; Persson, Tryggve; Cotrufo, M. Francesca; Ekblad, Alf; Freeman, Michael; Grelle, Achim; Janssens, Ivan A.; Jarvis, Paul G.; Kellomäki, Seppo; Lindroth, Anders; Loustau, Denis; Lundmark, Tomas; Norby, Richard J.; Oren, Ram; Pilegaard, Kim; Ryan, Michael G.; Sigurdsson, Bjarni D.; Strömgren, Monika; van Oijen, Marcel; Wallin, Göran

Date: 2007

Source: New Phytologist. 173(3): 463-480.

Publication Series: Not categorized

Description: Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.

Keywords: forest ecosystems, carbon sequestration, CO2

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hyvönen, Riitta; Ågren, Göran I.; Linder, Sune; Persson, Tryggve; Cotrufo, M. Francesca; Ekblad, Alf; Freeman, Michael; Grelle, Achim; Janssens, Ivan A.; Jarvis, Paul G.; Kellomäki, Seppo; Lindroth, Anders; Loustau, Denis; Lundmark, Tomas; Norby, Richard J.; Oren, Ram; Pilegaard, Kim; Ryan, Michael G.; Sigurdsson, Bjarni D.; Strömgren, Monika; van Oijen, Marcel; Wallin, Göran 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist. 173(3): 463-480.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.