Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(874 KB)

Title: Partitioning error components for accuracy-assessment of near-neighbor methods of imputation

Author: Stage, Albert R.; Crookston, Nicholas L.

Date: 2007

Source: Forest Science. 53(1): 62-72.

Publication Series: Journal/Magazine Article (JRNL)

Description: Imputation is applied for two quite different purposes: to supply missing data to complete a data set for subsequent modeling analyses or to estimate subpopulation totals. Error properties of the imputed values have different effects in these two contexts. We partition errors of imputation derived from similar observation units as arising from three sources: observation error, the distribution of observation units with respect to their similarity, and pure error given a particular choice of variables known for all observation units. Two new statistics based on this partitioning measure the accuracy of the imputations, facilitating comparison of imputation to alternative methods of estimation such as regression and comparison of alternative methods of imputation generally. Knowing the relative magnitude of the errors arising from these partitions can also guide efficient investment in obtaining additional data. We illustrate this partitioning using three extensive data sets from western North America. Application of this partitioning to compare near-neighbor imputation is illustrated for Mahalanobis- and two canonical correlation-based measures of similarity.

Keywords: most similar neighbor, k-nn inference, missing data, landscape modeling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Stage, Albert R.; Crookston, Nicholas L. 2007. Partitioning error components for accuracy-assessment of near-neighbor methods of imputation. Forest Science. 53(1): 62-72.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.