Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(3.02 MB bytes)

Title: Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

Author: Via, Brian K.; So, chi L.; Groom, Leslie H.; Shupe, Todd F.; Stine, michael; Wikaira, Jan.

Date: 2007

Source: IAWA Journal, Vol. 28(2): 189-209

Publication Series: Not categorized

Description: A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris) trees. Klason lignin (n=70), microfibril angle (n=70), and extractives (n=100) were measured and reported at different ring numbers and heights. All three traits were strongly influenced by ring age from pith while microfibril angle and extractives exhibited more of a height effect than lignin. As such, the multivariate response of the three traits were different in the axial direction than the radial direction supporting that care needs to be taken when defining juvenile wood within the tree. The root mean square error of calibration (RMSEC) for microfibril angle of the theoretical model (RMSEC = 9.8) was almost as low as the least squares regression model (RMSEC = 9.35). Microfibril angle calibrations were also built from NIR absorbance and showed a strong likeness to theoretical and experimental models (RMSEC = 9.0). As a result, theoretical and experimental work provided evidence that lignin content played a significant role in how NIR absorbance relates to microfibril angle. Additionally, the large variation in extractives content coupled with sampling procedure proved important when developing NIR based calibration equations for lignin and microfibril angle.

Keywords: NIR, polymer, lignin, extractives, microfibril angle, growth rate

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Via, Brian K.; So, chi L.; Groom, Leslie H.; Shupe, Todd F.; Stine, michael; Wikaira, Jan. 2007. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle. IAWA Journal, Vol. 28(2): 189-209

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.