Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(677 KB bytes)

Title: Neutral model analysis of landscape patterns from mathematical morphology

Author: Riitters, Kurt H.; Vogt, Peter; Soille, Pierre; Kozak, Jacek; Estreguil, Christine

Date: 2007

Source: Landscape Ecol., Vol. 22: 1033-1043

Publication Series: Miscellaneous Publication

Description: Mathematical morphology encompasses methods for characterizing land-cover patterns in ecological research and biodiversity assessments. This paper reports a neutral model analysis of patterns in the absence of a structuring ecological process, to help set standards for comparing and interpreting patterns identified by mathematical morphology on real land-cover maps. We considered six structural classes (core, perforated, edge, connector, branch, and patch) on randomly generated binary (forest, non-forest) maps in which the percent occupancy (P) of forest varied from 1% to 99%. The maps were dominated by the patch class for low P, by the branch and connector classes for intermediate P, and by the edge, perforated, and core classes for high P. Two types of pattern phase changes were signaled by abrupt transitions among the six structural classes, at critical P thresholds that were indicated by increased variance among maps for the same P. A phase change from maps dominated by the patch class to maps dominated by the branch and connector classes was related to the existence of a percolating cluster of forest, and the P threshold varied depending on the co-existence of the core class. A second phase change from the edge class to the perforated class was related to the existence of a percolating cluster of non-core (including non-forest) and represents a change of context from exterior to interior. Our results appear to be the first demonstration of multiple phase changes controlling different aspects of landscape pattern on random neutral maps. Potential applications of the results are illustrated by an analysis of ten real forest maps.

Keywords: pattern analysis, percolation theory, phase change, simulation, threshold

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Riitters, Kurt H.; Vogt, Peter; Soille, Pierre; Kozak, Jacek; Estreguil, Christine 2007. Neutral model analysis of landscape patterns from mathematical morphology. Landscape Ecol., Vol. 22: 1033-1043

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.