Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.2 MB)

Title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and Kappa

Author: Freeman, Elizabeth A.; Moisen, Gretchen G.

Date: 2008

Source: Ecological Modelling. 217: 48-58.

Publication Series: Scientific Journal (JRNL)

Description: Modelling techniques used in binary classification problems often result in a predicted probability surface, which is then translated into a presence - absence classification map. However, this translation requires a (possibly subjective) choice of threshold above which the variable of interest is predicted to be present. The selection of this threshold value can have dramatic effects on model accuracy as well as the predicted prevalence for the variable (the overall proportion of locations where the variable is predicted to be present). The traditional default is to simply use a threshold of 0.5 as the cut-off, but this does not necessarily preserve the observed prevalence or result in the highest prediction accuracy, especially for data sets with very high or very low observed prevalence. Alternatively, the thresholds can be chosen to optimize map accuracy, as judged by various criteria. Here we examine the effect of 11 of these potential criteria on predicted prevalence, prediction accuracy, and the resulting map output. Comparisons are made using output from presence - absence models developed for 13 tree species in the northern mountains of Utah. We found that species with poor model quality or low prevalence were most sensitive to the choice of threshold. For these species, a 0.5 cut-off was unreliable, sometimes resulting in substantially lower kappa and underestimated prevalence, with possible detrimental effects on a management decision. If a management objective requires a map to portray unbiased estimates of species prevalence, then the best results were obtained from thresholds deliberately chosen so that the predicted prevalence equaled the observed prevalence, followed closely by thresholds chosen to maximize kappa. These were also the two criteria with the highest mean kappa from our independent test data. For particular management applications the special cases of user specified required accuracy may be most appropriate. Ultimately, maps will typically have multiple and somewhat conflicting management applications. Therefore, providing users with a continuous probability surface may be the most versatile and powerful method, allowing threshold choice to be matched with each maps intended use.

Keywords: binary classification, ROC, AUC, sensitivity, specificity, threshold

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Freeman, Elizabeth A.; Moisen, Gretchen G. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and Kappa. Ecological Modelling. 217: 48-58.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.