Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(737 KB bytes)

Title: Nondestructive system for analyzing carbon in the soil

Author: Wielopolski, Lucian; Hendrey, George; Johnsen, Kurt H.; Mitra, Sudeep; Prior, Stephen A.; Rogers, Huga H.; Torbert, H. Allen

Date: 2008

Source: Soil Sci. Soc. Am. J., Vol. 72(5): 1269-1277

Publication Series: Miscellaneous Publication

Description: Carbon is an essential component of life and, in its organic form, plays a pivotal role in the soil’s fertility, productivity, and water retention. It is an integral part of the atmospheric–terrestrial C exchange cycle mediated via photosynthesis; furthermore, it emerged recently as a new trading commodity, i.e., “carbon credits.” When carefully manipulated, C sequestration by the soil could balance and mitigate anthropogenic CO2 emissions into the atmosphere that are believed to contribute to global warming. The pressing need for assessing the soil’s C stocks at local, regional, and global scales, now in the forefront of much research, is considerably hindered by the problems besetting dry-combustion chemical analyses, even with state-of-the-art procedures. To overcome these issues, we developed a new method based on gamma-ray spectroscopy induced by inelastic neutron scattering (INS). The INS method is an in situ, nondestructive, multielemental technique that can be used in stationary or continuous-scanning modes of operation. The results from data acquired from an investigated soil mass of a few hundred kilograms to an approximate depth of 30 cm are reported immediately. Our initial experiments have demonstrated the feasibility of our proposed approach; we obtained a linear response with C concentration and a detection limit between 0.5 and 1% C by weight.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Wielopolski, Lucian; Hendrey, George; Johnsen, Kurt H.; Mitra, Sudeep; Prior, Stephen A.; Rogers, Huga H.; Torbert, H. Allen 2008. Nondestructive system for analyzing carbon in the soil. Soil Sci. Soc. Am. J., Vol. 72(5): 1269-1277

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.