Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(440 KB)

Title: Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

Author: Bradford, J.B.; Birdsey, R.A.; Joyce, L.A.; Ryan, M.G.

Date: 2008

Source: Global Change Biology. 14: 2882-2897.

Publication Series: Journal/Magazine Article (JRNL)

Description: Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage and cycling, we examined stands of known disturbance history in three landscapes of the southern Rocky Mountains. Our objectives were to assess the similarity between carbon stocks and fluxes for these three landscapes that differed in climate and disturbance history, characterize the relationship between observed tree age and time since disturbance and quantify the predictive capability of tree age or time since disturbance on carbon stocks and fluxes. Carbon pools and fluxes were remarkably similar across the three landscapes, despite differences in elevation, climate, species composition, disturbance history, and forest age. Observed tree age was a poor predictor of time since disturbance. Maximum tree age overestimated time since disturbance for young forests and underestimated it for older forests. Carbon pools and fluxes were related to both tree age and disturbance history, but the relationships differed between these two predictors and were generally less variable for pools than for fluxes. Using tree age in a relationship developed with time since disturbance or vice versa increases errors in estimates of carbon stocks or fluxes. Little change in most carbon stocks and fluxes occurs after the first 100 years following stand-replacing disturbance, simplifying landscape scale estimates. We conclude that subalpine forests in the Central Rocky Mountains can be treated as a single forest type for the purpose of assessment and modeling of carbon, and that the critical period for change in carbon is <100 years.

Keywords: carbon dynamics, disturbance, forest age, scaling

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bradford, J.B.; Birdsey, R.A.; Joyce, L.A.; Ryan, M.G. 2008. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Global Change Biology. 14: 2882-2897.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.