Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(0 bytes)

Title: Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

Author: Crumbley, Tyler; Sun, Ge; McNulty, Steve

Date: 2008

Source: Emerging issues along urban-rural interfaces II proceedings: pgs 196-199

Publication Series: Not categorized

Description: Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly important under the threat of changing climate. Measuring and predicting the amount of runoff and erosion from fire induced forested watersheds is difficult and costly. Erosion simulation models assist in relieving the time and resources consumed predicting these effects. The process-based Water Erosion Prediction Project (GeoWEPP) is widely used in the Western U.S. to predict erosion from forest fires. The objective of this study was to evaluate the effectiveness of the Geo WEPP model in predicting sedimentation amounts from low, moderate and high intensity forest fires on pine stands of the Sumter National Forest in the piedmont region of South Carolina. Modeling results were compared to observed sediment production of 48 small-scale plots within the watersheds. Results from the simulations conclude that the Geo WEPP model satisfactorily predicted erosion amounts during unburned, low and moderate intensity forest fire conditions. We found that low intensity fires may not elevate sediment loading above tolerable rates, however, severe fires can cause soil erosion and sediment loading at levels of concern in water quality degradation. Land topography, fire intensity, storm intensity and soil type are key variables to predicting soil erosion and runoff. This study is the first to evaluate the effectiveness of the Geo WEPP model in predicting runoff and sedimentation in Southeastern piedmont watersheds.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Crumbley, Tyler; Sun, Ge; McNulty, Steve 2008. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont. Emerging issues along urban-rural interfaces II proceedings: pgs 196-199

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.