Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.0 MB byte)

Title: Experimental method to account for structural compliance in nanoindentation measurements

Author: Jakes, Joseph E.; Frihart, Charles R.; Beecher, James F.; Moon, Robert J.; Stone, D. S.

Date: 2008

Source: Journal of materials research. Vol. 23, no. 4 (Apr. 2008): Pages 1113-1127.

Publication Series: Not categorized

Description: The standard Oliver–Pharr nanoindentation analysis tacitly assumes that the specimen is structurally rigid and that it is both semi-infinite and homogeneous. Many specimens violate these assumptions. We show that when the specimen flexes or possesses heterogeneities, such as free edges or interfaces between regions of different properties, artifacts arise in the standard analysis that affect the measurement of hardness modulus. The origin of these artifacts is a structural compliance (Cs), which adds to the machine compliance (Cm), but unlike the latter, Cs can vary as a function of position within the specimen. We have developed an experimental approach to isolate and remove Cs. The utility of the method is demonstrated using specimens including (i) a silicon beam, which flexes because it is supported only at the ends, (ii) sites near the free edge of a fused silica calibration standard, (iii) the tracheid walls in unembedded loblolly pine (Pinus taeda), and (iv) the polypropylene matrix in a polypropylene–wood composite.

Keywords: Elasticity, thermoplastic composites, composite materials, mechanical properties, wood-plastic composites, fiber-reinforced plastics, mechanical properties, polypropylene, nanotechnology, nanostructured materials, measurement, microstructure, plant cell walls, hardness, silicon, modulus of elasticity, tracheids, nanoindentation, wood-plastic materials

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Jakes, Joseph E.; Frihart, Charles R.; Beecher, James F.; Moon, Robert J.; Stone, D. S. 2008. Experimental method to account for structural compliance in nanoindentation measurements. Journal of materials research. Vol. 23, no. 4 (Apr. 2008): Pages 1113-1127.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.