Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.3 MB)

Title: The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data

Author: Falkowski, Michael J.; Smith, Alistair M.S.; Gessler, Paul E.; Hudak, Andrew T.; Vierling, Lee A.; Evans, Jeffrey S.

Date: 2008

Source: Canadian Journal of Remote Sensing. 34(2): S338-S350.

Publication Series: Scientific Journal (JRNL)

Description: Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to assess the performance of these image-based tree detection algorithms across a full range of canopy structure conditions. We evaluated the performance of two fundamentally different automated tree detection and measurement algorithms (spatial wavelet analysis (SWA) and variable window filters (VWF)) across a full range of canopy conditions in a mixed-species, structurally diverse conifer forest in northern Idaho, USA. Each algorithm performed well in low canopy cover conditions (<50% canopy cover), detecting over 80% of all trees with measurements, and producing tree height and crown diameter estimates that are well correlated with field measurements. However, increasing tree canopy cover significantly decreased the accuracy of both SWA and VWF tree measurements. Neither SWA or VWF produced tree measurements within 25% of field-based measurements in high canopy cover (i.e., canopy cover >50%) conditions. The results presented herein suggest that future algorithm development is required to improve individual tree detection in structurally complex forests. Furthermore, tree detection algorithms such as SWA and VWF may produce more accurate results when used in conjunction with higher density lidar data.

Keywords: conifer forest canopy cover, tree detection algorithms, lidar data, spatial wavelet analysis (SWA), variable window filters (VWF)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Falkowski, Michael J.; Smith, Alistair M.S.; Gessler, Paul E.; Hudak, Andrew T.; Vierling, Lee A.; Evans, Jeffrey S. 2008. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Canadian Journal of Remote Sensing. 34(2): S338-S350.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.