Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(769 KB)

Title: Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA

Author: Falkowski, Michael J.; Evans, Jeffrey S.; Martinuzzi, Sebastian; Gessler, Paul E.; Hudak, Andrew T.

Date: 2009

Source: Remote Sensing of Environment. 113: 946-956.

Publication Series: Scientific Journal (JRNL)

Description: Quantifying forest structure is important for sustainable forest management, as it relates to a wide variety of ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this technology to characterize forest succession remains largely untested. The objective of this study was to evaluate the use of lidar data for characterizing forest successional stages across a structurally diverse, mixed-species forest in Northern Idaho. We used a variety of lidar-derived metrics in conjunction with an algorithmic modeling procedure (Random Forests) to classify six stages of three-dimensional forest development and achieved an overall accuracy>95%. The algorithmic model presented herein developed ecologically meaningful classifications based upon lidar metrics quantifying mean vegetation height and canopy cover, among others. This study highlights the utility of lidar data for accurately classifying forest succession in complex, mixed coniferous forests; but further research should be conducted to classify forest successional stages across different forests types. The techniques presented herein can be easily applied to other areas. Furthermore, the final classification map represents a significant advancement for forest succession modeling and wildlife habitat assessment.

Keywords: Lidar, forest succession, forest structure, random forests, wildlife

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Falkowski, Michael J.; Evans, Jeffrey S.; Martinuzzi, Sebastian; Gessler, Paul E.; Hudak, Andrew T. 2009. Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment. Remote Sensing of Environment. 113: 946-956.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.