Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(325 KB)

Title: Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape

Author: Pierson, Frederick B.; Robichaud, Peter R.; Moffet, Corey A.; Spaeth, Kenneth E.; Hardegree, Stuart P.; Clark, Patrick E.; Williams, C. Jason

Date: 2008

Source: Hydrological Processes. 22: 2916-2929.

Publication Series: Journal/Magazine Article (JRNL)

Description: Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow simulations were applied to unburned and severely burned hillslopes to determine the spatial continuity and persistence of fire-induced impacts on runoff and erosion by interrill and rill processes on steep sagebrush-dominated sites. Runoff and erosion were measured immediately following and each of 3 years post-wildfire. Spatial and temporal variability in post-fire hydrologic and erosional responses were compared with runoff and erosion measured under unburned conditions. Results from interrill simulations indicate fire-induced impacts were predominantly on coppice microsites and that fire influenced interrill sediment yield more than runoff. Interrill runoff was nearly unchanged by burning, but 3-year cumulative interrill sediment yield on burned hillslopes (50 g m-2) was twice that of unburned hillslopes (25 g m-2). The greatest impact of fire was on the dynamics of runoff once overland flow began. Reduced ground cover on burned hillslopes allowed overland flow to concentrate into rills. The 3-year cumulative runoff from concentrated flow simulations on burned hillslopes (298 l) was nearly 20 times that measured on unburned hillslopes (16 l). The 3-year cumulative sediment yield from concentrated flow on burned and unburned hillslopes was 20 400 g m-2 and 6 g m-2 respectively. Fire effects on runoff generation and sediment were greatly reduced, but remained, 3 years post-fire. The results indicate that the impacts of fire on runoff and erosion from severely burned steep sagebrush landscapes vary significantly by microsite and process, exhibiting seasonal fluctuation in degree, and that fire-induced increases in runoff and erosion may require more than 3 years to return to background levels.

Keywords: erosion, fire, infiltration, interrill, rangeland, rills, runoff, sagebrush, water-repellent soils

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Pierson, Frederick B.; Robichaud, Peter R.; Moffet, Corey A.; Spaeth, Kenneth E.; Hardegree, Stuart P.; Clark, Patrick E.; Williams, C. Jason 2008. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape. Hydrological Processes. 22: 2916-2929.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.