Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(136 KB)

Title: Predicting forest attributes from climate data using a recursive partitioning and regression tree algorithm

Author: Liknes, Greg C.; Woodall, Christopher W.; Perry, Charles H.

Date: 2009

Source: In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. Forest Inventory and Analysis (FIA) Symposium 2008; October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 7 p.

Publication Series: Proceedings (P)

   Note: This article is part of a larger document. View the larger document

Description: Climate information frequently is included in geospatial modeling efforts to improve the predictive capability of other data sources. The selection of an appropriate climate data source requires consideration given the number of choices available. With regard to climate data, there are a variety of parameters (e.g., temperature, humidity, precipitation), time intervals (e.g., 30- year normal, seasonal average), and summary statistics (e.g., mean, minimum) which can be selected. In this study, we propose a technique for evaluating the combination of climate parameters that are most closely related to ground observations of forest attributes. Using data from the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service as response variables, recursive partitioning and regression tree analysis was applied using a suite of climate variables from the Daymet database as predictor data. Although model improvement scores for climate variables were modest, the technique provides opportunities for deciding among a wide array of possible climate predictors.

Keywords: Daymet, climate, forest inventory, data mining

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Liknes, Greg C.; Woodall, Christopher W.; Perry, Charles H. 2009. Predicting forest attributes from climate data using a recursive partitioning and regression tree algorithm. In: McWilliams, Will; Moisen, Gretchen; Czaplewski, Ray, comps. Forest Inventory and Analysis (FIA) Symposium 2008; October 21-23, 2008; Park City, UT. Proc. RMRS-P-56CD. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 7 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.