Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(629 KB)

Title: Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

Author: Domec, J.-C.; Noormets, A.; Sun, Ge; King, J.; McNulty, Steven; Gavazzi, Michael; Boggs, Johnny; Treasure, Emrys

Date: 2009

Source: Plant, Cell and Environment, Vol. 32: 980-991

Publication Series: Scientific Journal (JRNL)

Description: The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal control of transpiration and its response to vapour pressure deficit (D) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), Kroot declined faster than Kleaf. Although Ktree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased Kleaf when REW was below 50%.After accounting for the effect of D on gs, the seasonal decline in Ktree caused a 35% decrease in gs and in its sensitivity to D, responses that were mainly driven by Kleaf under high REW and by Kroot under low REW.We conclude that not only water stress but also leaf phenology affects the coordination between Ktree and gs and the acclimation of trees to changing environmental conditions.

Keywords: pinus taeda, coastal plain, conductivity, embolism, LAI, leaf phenology, soil moisture, water potential

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Domec, J.-C., A. Noormets, J.S. King, G. Sun, S.G. McNulty, M.J. Gavazzi, J.L. Boggs, and E.A. Treasure. 2009. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant, Cell & Environment 32:980-991.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.