Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(562 KB)

Title: Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilizationpce

Author: Domec, Jean-Christophe; Palmroth, Sari; Ward, Eric; Maier, Chris; Therezien, M.; Oren, Ram

Date: 2009

Source: Plant, Cell & Environment: 1-13

Publication Series: Scientific Journal (JRNL)

Description: We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations CO2 a and CO2 e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (Yleaf-ref) and stomatal conductance (gs-ref) calculated at vapour pressure deficit, D of 1 kPa.We detected significant reductions in Kleaf caused by N and CO2e, but neither treatment affected pre-dawn or midday Yleaf.We also detected a significant CO2 e-induced reduction in gs-ref and Yleaf-ref. Among treatments, the sensitivity ofKleaf toYleaf was directly related to a reference Kleaf (Kleaf-ref computed at Yleaf-ref). This liquid-phase response was reflected in a similar gas-phase response, with gs sensitivity to D proportional to gs-ref. Because leaves represented a substantial component of the whole-tree conductance, reduction in Kleaf under CO2 e affected whole-tree water use by inducing a decline in gs-ref. The consequences of the acclimation of leaves to the treatments were: (1) trees growing under CO2 e controlled morning leaf water status less than CO2 a trees resulting in a higher diurnal loss of Kleaf; (2) the effect of CO2 e on gs-ref was manifested only during times of high soil moisture.

Keywords: capacitance, embolism, reference conductances, reference leaf water potential, time constant, turgor loss point

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Plant, Cell & Environment: 1-13

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.