Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(111 KB)

Title: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases

Author: Eskelson, Bianca N. I.; Temesgen, Hailemariam; Lemay, Valerie; Barrett, Tara M.; Crookston, Nicholas L.; Hudak, Andrew T.

Date: 2009

Source: Scandinavian Journal of Forest Research. 24: 235-246.

Publication Series: Scientific Journal (JRNL)

Description: Almost universally, forest inventory and monitoring databases are incomplete, ranging from missing data for only a few records and a few variables, common for small land areas, to missing data for many observations and many variables, common for large land areas. For a wide variety of applications, nearest neighbor (NN) imputation methods have been developed to fill in observations of variables that are missing on some records (Y-variables), using related variables that are available for all records (X-variables). This review attempts to summarize the advantages and weaknesses of NN imputation methods and to give an overview of the NN approaches that have most commonly been used. It also discusses some of the challenges of NN imputation methods. The inclusion of NN imputation methods into standard software packages and the use of consistent notation may improve further development of NN imputation methods. Using X-variables from different data sources provides promising results, but raises the issue of spatial and temporal registration errors. Quantitative measures of the contribution of individual X-variables to the accuracy of imputing the Y-variables are needed. In addition, further research is warranted to verify statistical properties, modify methods to improve statistical properties, and provide variance estimators.

Keywords: consistent notation, forest measurements, input data for forest planning, nearest neighbor imputation, registration error, sources of X-variables

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Eskelson, Bianca N. I.; Temesgen, Hailemariam; Lemay, Valerie; Barrett, Tara M.; Crookston, Nicholas L.; Hudak, Andrew T. 2009. The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scandinavian Journal of Forest Research. 24: 235-246.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.