Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(116 KB)

Title: Determination of cellulose I crystallinity by FT-Raman spectroscopy

Author: Agarwal, Umesh P.; Reiner, Richard S.; Ralph, Sally A.

Date: 2009

Source: Proceedings of the 15th International Symposium on Wood, Fiber, and Pulping Chemistry, Oslo, Norway (June 15-18, 2009). Oslo, Norway : Congress-Conference AS, 2009: paper no. P-053_ISWFPC_Cellulose_Crystallinity.

Publication Series: Other

Description: Two new methods based on FT-Raman spectroscopy, one simple, based on band intensity ratio, and the other, using a partial least-squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in semicrystalline cellulose I samples was determined based on univariate regression that was first developed using the Raman band intensity ratio of the 380 and 1096 cm-1 bands. For calibration purposes, 90% crystalline Whatman CC31 and cellulose mixtures with crystallinities in the range 12-72% were used. When the intensity ratios were plotted against the theoretical crystallinities of the mixtures the plot showed a linear correlation (correlation coefficient R2 = 0.995). Standard error calculated from five replicate Raman acquisitions indicated that the cellulose I Raman crystallinity model was reliable. Crystallinities of these cellulose mixtures were also calculated from x-ray diffractograms but these generated a correlation that was inferior compared to the one based on the Raman model. Additionally, using both Raman and x-ray techniques, sample crystallinities were determined from partially crystalline cellulose samples that were generated by grinding Whatman CC31 in a vibratory mill. The two techniques showed significant differences. In contrast to x-ray diffractograms, evidence of significant differences was present between the Raman spectra of low crystallinity celluloses and indicated that Raman spectroscopy was better suited to investigate differences between such samples.
In the second approach, a successful PLS (partial least squares) regression model for crystallinity, covering the 12-90% range, was generated from the same 7 calibration sample Raman spectra used in the simple method. The calibration model had a strong relationship between theoretical and predicted crystallinity values (R2 = 0.995). The RMSEC (root mean square error of calibration) and RMSEP (root mean square error of prediction) values were 2.3 and 3.8%, respectively. RMSEP was the average prediction error, estimated in the validation stage and was subsequently validated with six independent ball milled Whatman CC31 samples. The regression coefficients obtained from the PLS model indicated that the cellulose bands, at 380 and 1096 cm-1 were the major contributors in building a robust model for predicting cellulose I crystallinity.
It was concluded that either of the two Raman methods could be used for cellulose I crystallinity determination in cellulose samples.

Keywords: Correlation, statistics, analytic chemistry, cellulose, chemistry, wood chemistry, X-rays, Raman spectroscopy, Fourier transform spectroscopy, spectrum analysis, regression analysis, standard error, partial least squares, band intensity ratio, cellulose I, crystallinity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Agarwal, U.P.; Reiner, R.S.; Ralph, S.A. 2009. Determination of cellulose I crystallinity by FT-raman spectroscopy. In: Proceedings of 15th international symposium on wood, fiber and pulping chemistry. 2009 June 15-18; Oslo, Norway: Congress-Conference AS, www.congrex.no. P-053, 4 p., limited availability.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.