Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(408 KB)

Title:

Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

Author: Via, B. K.; So, C. L.; Shupe, T. F.; Groom, L. H.; Wikaira, J.

Date: 2009

Source: Composites: Part A. 40: 60-66.

Publication Series: Scientific Journal (JRNL)

Description:

The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths, microfibril angle, density, and radial position within the tree on strength and stiffness. The aromatic portion of lignin provided a good predictive role on strength and stiffness at high microfibril angles. However, in mature wood where microfibril angle and lignin content was low, cellulose associated wavelengths became increasingly important. The increased importance of the aromatic portion of lignin (1665 nm) on the strength as microfibril angle increased was attributable to the plastic deformation of lignin that occurred beyond the yield point. Finally, a fourfold increase in stiffness was observed when the microfibril angle dropped from 40 to 5 degrees.

Keywords: wood, plastic deformation, micro-mechanics, mechanical testing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Via, B. K.; So, C. L.; Shupe, T. F.; Groom, L. H.; Wikaira, J. 2009. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position. Composites: Part A. 40:60-66.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.