Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(383 KB)

Title: Gradient modeling of conifer species using random forests

Author: Evans, Jeffrey S.; Cushman, Samuel A.

Date: 2009

Source: Landscape Ecology. 24: 673-683.

Publication Series: Not categorized

Description: Landscape ecology often adopts a patch mosaic model of ecological patterns. However, many ecological attributes are inherently continuous and classification of species composition into vegetation communities and discrete patches provides an overly simplistic view of the landscape. If one adopts a nichebased, individualistic concept of biotic communities then it may often be more appropriate to represent vegetation patterns as continuous measures of site suitability or probability of occupancy, rather than the traditional abstraction into categorical community types represented in a mosaic of discrete patches. The goal of this paper is to demonstrate the high effectiveness of species-level, pixel scale prediction of species occupancy as a continuous landscape variable, as an alternative to traditional classified community type vegetation maps. We use a Random Forests ensemble learning approach to predict site-level probability of occurrence for four conifer species based on climatic, topographic and spectral predictor variables across a 3,883 km2 landscape in northern Idaho, USA. Our method uses a new permutated sample-downscaling approach to equalize sample sizes in the presence and absence classes, a model selection method to optimize parsimony, and independent validation using prediction to 10% bootstrap data withhold. The models exhibited very high accuracy, with AUC and kappa values over 0.86 and 0.95, respectively, for all four species. The spatial predictions produced by the models will be of great use to managers and scientists, as they provide vastly more accurate spatial depiction of vegetation structure across this landscape than has previously been provided by traditional categorical classified community type maps.

Keywords: predictive modeling, random forests, CART, gradient

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Evans, Jeffrey S.; Cushman, Samuel A. 2009. Gradient modeling of conifer species using random forests. Landscape Ecology. 24: 673-683.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.