Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(289 KB)

Title: A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires

Author: Robichaud, P. R.; Elliot, W. J.; Pierson, F. B.; Hall, D. E.; Moffet, C. A.

Date: 2009

Source: In: Anderssen, R. S.; Braddock, R. D.; Newham, L. T. H., eds. 18th World IMACS Congress and MODSIM09 International Congress on modelling and simulation; July 13-17, 2009; Cairns, Australia. Modelling and Simulation Society of Australia and New Zealand; and International Association for Mathematics and Computers in Simulation: 1893-1899.

Publication Series: Paper (invited, offered, keynote)

Description: Major concerns after bushfires and wildfires include increased flooding, erosion and debris flows due to loss of the protective forest floor layer, loss of water storage, and creation of water repellent soil conditions. To assist postfire assessment teams in their efforts to evaluate fire effects and make postfire treatment decisions, a web-based Erosion Risk Management Tool (ERMiT) has been developed. ERMiT uses the Water Erosion Prediction Project (WEPP) model to predict postfire hillslope erosion and to evaluate the potential effectiveness of some common hillslope erosion mitigation practices. The model uses a probabilistic approach that incorporates variability in climate, soil properties, and burn severity for forests, rangeland, and chaparral hillslopes. For user specified climate, burn severity, and soil conditions, ERMiT produces a distribution of erosion rates with a likelihood of their occurrence for each of five years after the fire. ERMiT also provides single-event erosion rate distributions for hillslopes that have been treated with seed, straw mulch, and erosion barriers. ERMiT's outputs help managers establish the probability associated with a given level of sediment yield for a given location, and this information can be used along with information about the value of resources at risk and acceptable loss thresholds to make postfire erosion treatment decisions. The objectives of this paper are to describe: 1) the conceptual framework and components of the ERMiT model; and 2) an application of ERMiT from 2009 Victoria, Australia bushfires.

Keywords: sediment yield, wildfire, WEPP, ERMiT, Victoria Bushfires

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rschneider@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Robichaud, P. R.; Elliot, W. J.; Pierson, F. B.; Hall, D. E.; Moffet, C. A. 2009. A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires. In: Anderssen, R. S.; Braddock, R. D.; Newham, L. T. H., eds. 18th World IMACS Congress and MODSIM09 International Congress on modelling and simulation; July 13-17, 2009; Cairns, Australia. Modelling and Simulation Society of Australia and New Zealand; and International Association for Mathematics and Computers in Simulation: 1893-1899.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.