Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(582 KB)

Title: Soil carbon and nitrogen in a Great Basin pinyon-juniper woodland: Influence of vegetation, burning, and time

Author: Rau, B. M.; Johnson, D. W.; Blank, R. R.; Chambers, J. C.

Date: 2009

Source: Journal of Arid Environments. 73(4-5): 472-479.

Publication Series: Not categorized

Description: Much of the Great Basin, U.S. is currently dominated by sagebrush (Artemisia tridentate ssp. (Rydb.) Boivin) ecosystems. At intermediate elevations, sagebrush ecosystems are increasingly influenced by pinyon (Pinus monophylla Torr. & Frem.) and juniper (Juniperus osteosperma Torr.) expansion. Some scientists and policy makers believe that increasing woodland cover in the intermountain western US will create new carbon storage on the landscape; however, little is currently known about the distribution of carbon on these landscapes. This is especially true of below ground pools. Our objectives were to quantify the spatial distribution of soil carbon in expansion woodlands, and to determine prescribed fire's effect on soil C and N. We looked at two treatments (control and burn), three microsites (undertree, undershrub, and interspace), and four soil depths (0-8, 8-23, 23-38, and 38-52 cm). The study was conducted over a six year period with one year pre-fire and five years postfire data. Results for both carbon and nitrogen were similar, indicating the close relationship between the two elements in this ecosystem. Undershrub microsites had higher soil C and N concentrations than interspace and undertree microsites; however, under tree microsites had higher C:N ratio than interspace and undershrub microsites. Carbon and nitrogen concentration tended to decrease with increasing depth at both control and burn sites. Prescribed burning caused immediate increases in surface soil C and N concentration, but over intermediate to longer periods of time no statistically detectable change in soil C or N content occurred from burning.

Keywords: carbon storage, prescribed fire, spatial heterogeneity, woodland expansion

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Rau, B. M.; Johnson, D. W.; Blank, R. R.; Chambers, J. C. 2009. Soil carbon and nitrogen in a Great Basin pinyon-juniper woodland: Influence of vegetation, burning, and time. Journal of Arid Environments. 73(4-5): 472-479.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.