Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.6 MB)

Title: Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles

Author: Youngblood, Andrew; Grace, James B.; McIver, James D.

Date: 2009

Source: Ecological Applications. 19(2): 321-337

Publication Series: Scientific Journal (JRNL)

Description:

Many low-elevation dry forests of the Western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests.

Keywords: Burning, Douglas-fir, latent mortality, path models, ponderosa pine, restoration treatments, stand structure, structural equation modeling, thinning.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Youngblood, Andrew; Grace, James B.; McIver, James D. 2009. Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles. Ecological Applications.19(2):321-337.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.