Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(677 KB)

Title: Landscape-scale parameterization of a tree-level forest growth model: a k-nearest neighbor imputation approach incorporating LiDAR data

Author: Falkowski, Michael J.; Hudak, Andrew T.; Crookston, Nicholas L.; Gessler, Paul E.; Uebler, Edward H.; Smith, Alistair M. S.

Date: 2010

Source: Canadian Journal of Forest Research. 40: 184-199.

Publication Series: Scientific Journal (JRNL)

Description: Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and species) across a 12 100 ha study area in northeastern Oregon, USA. The primary objective was to provide spatially explicit data to parameterize the Forest Vegetation Simulator, a tree-level forest growth model. The final imputation model utilized LiDAR-derived height measurements and topographic variables to spatially predict tree-level forest inventory data. When compared with an independent data set, the accuracy of forest inventory metrics was high; the root mean square difference of imputed basal area and stem volume estimates were 5 m2·ha-1 and 16 m3·ha-1, respectively. However, the error of imputed forest inventory metrics incorporating small trees (e.g., quadratic mean diameter, tree density) was considerably higher. Forest Vegetation Simulator growth projections based upon imputed forest inventory data follow trends similar to growth projections based upon independent inventory data. This study represents a significant improvement in our capabilities to predict detailed, tree-level forest inventory data across large areas, which could ultimately lead to more informed forest management practices and policies.

Keywords: LiDAR data, k-nearest neighbor, forest inventory

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Falkowski, Michael J.; Hudak, Andrew T.; Crookston, Nicholas L.; Gessler, Paul E.; Uebler, Edward H.; Smith, Alistair M. S. 2010. Landscape-scale parameterization of a tree-level forest growth model: a k-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research. 40: 184-199.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.