Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.1 MB)

Title: Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex

Author: Mountjoy, Joshu J.; McKean, Jim; Barnes, Philip M.; Pettinga, Jarg R.

Date: 2009

Source: Marine Geology. 267: 114-127.

Publication Series: Not categorized

Description: Morphometric analysis of Simrad EM300 multibeam bathymetric DEMs reveals details of deformation patterns in a ~145 km2 submarine landslide complex that are commonly associated with slow-moving earthflows in terrestrial settings. This mode of failure, where existing landslide debris is remobilised repeatedly along discrete shear boundaries and is progressively conveyed through the complex, has not previously been recognised in the submarine environment. The kinematics contrast with the more traditional models of submarine landslide complex development in which repeated catastrophic failures each mobilise new source material to form a composite stacked landslide deposit. In our study of the Tuaheni landslide complex on the Hikurangi Margin of New Zealand, remobilisation has formed boundary shear zones imaged at the seafloor surface in multibeam data, and at depth in multichannel seismic reflection data. A significant amount of internal deformation has occurred within the debris streams. Phases of deformation appear to be partitioned longitudinally as extensional and contractional zones rooted into a basal decollement, and laterally with strikeĀ­slip shears partitioning discrete debris streams. While slow-moving terrestrial earthflows are activated by fluctuating piezometric levels typically controlled by precipitation, different processes cause the equivalent mobility in a submarine earthflow. Elevated pore pressures in submarine earthflows are produced by processes such as earthquake-generated strong ground motion and/ or gas/fluid release. Earthflow movement in submarine settings is prolonged by slow dissipation in pore pressure.

Keywords: submarine earthflow, mass transport complex, morphometric analysis, landslide kinematics, EM300 multibeam, submarine geomorphology

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Mountjoy, Joshu J.; McKean, Jim; Barnes, Philip M.; Pettinga, Jarg R. 2009. Terrestrial-style slow-moving earthflow kinematics in a submarine landslide complex. Marine Geology. 267: 114-127.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.