Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(927 KB)

Related Research Highlights

Picture of High Resolution Weather for Fire Risk Assessment
PSW-2011-09
High Resolution Weather for Fire Risk Assessment

Title: Estimation of fire danger in Hawai'i using limited weather data and simulation

Author: Weise, D.R.; Stephens, S.L.; Fujioka, F.M.; Moody, T.J.; Benoit, J.

Date: 2010

Source: Pacific Science 64(2):199-220

Publication Series: Scientific Journal (JRNL)

Description: The presence of fire in Hawai'i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rating System (NFDRS) typically requires 5 to 10 yr of data to determine percentile weather values and fire activity. The U.S. Army Pōhakuloa Training Area in Hawai‘i is located in the interface zone between windward and leeward weather conditions and needed to develop fire danger values but did not have sufficient weather or fire occurrence data. Use of simulation to estimate fire danger (expressed as fire risk) for areas with limited weather data was investigated. Influence of spatial resolution of weather information on fire risk was examined by comparing fire risk calculated using one or three weather stations and gridded weather predictions from the Mesoscale Spectral Model. Predicted gridded temperature was positively correlated with observed temperature; predicted and observed relative humidity were not significantly correlated. Simulated fire risk differed between weather data percentiles and between weather data resolutions. Predicted risk estimated from gridded weather data agreed more closely with observed risk estimated from weather data observed at all three remote automated weather stations. Correlation between simulated fire risk and the NFDRS Ignition Component was statistically significant for the single weather station simulations. Correlations between risk and the Ignition Component were not statistically significant for the three station and gridded weather data scenarios, which illustrates the difference between fire danger determined at broad spatial scales and fire risk resolved at finer spatial scales. Fire spread simulation modeling to estimate fire risk in areas with limited historical weather and fire occurrence data can provide finer-scale information than the NFDRS, which is better suited to larger, homogeneous areas with more complete fire and weather data. Values for the NFDRS Burning Index were determined and incorporated into the wildland fire management plan for Pōhakuloa Training Area.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Weise, D.R.; Stephens, S.L.; Fujioka, F.M.; Moody, T.J.; Benoit, J. 2010. Estimation of fire danger in Hawai’i using limited weather data and simulation. Pacific Science 64(2): 199-220

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.