Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(525 KB)

Title: Use of artificial landscapes to isolate controls on burn probability

Author: Parisien, Marc-Andre; Miller, Carol; Ager, Alan A.; Finney, Mark A.

Date: 2010

Source: Landscape Ecology. 25: 79-94.

Publication Series: Miscellaneous Publication

Description: Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of environmental factors on BP patterns is not well understood. This study examined the relative effects of ignitions, fuels, and weather on mean BP and spatial patterns in BP (i.e., BP variability) using highly simplified artificial landscapes and wildfire simulation methods. Our results showed that a limited set of inputs yielded a wide range of responses in the mean and spatial patterning of BP. The input factors contributed unequally to mean BP and to BP variability: so-called top-down controls (weather) primarily influenced mean BP, whereas bottom-up influences (ignitions and fuels) were mainly responsible for the spatial patterns of BP. However, confounding effects and interactions among factors suggest that fully separating top-down and bottom-up controls may be impossible. Furthermore, interactions among input variables produced unanticipated but explainable BP patterns, hinting at complex topological dependencies among the main determinants of fire spread and the resulting BP. The results will improve our understanding of the spatial ecology of fire regimes and help in the interpretation of patterns of fire likelihood on real landscapes as part of future wildfire risk assessments.

Keywords: burn probability, Burn-P3 simulation model, ignitions, fuels, fire weather

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Parisien, Marc-Andre; Miller, Carol; Ager, Alan A.; Finney, Mark A. 2010. Use of artificial landscapes to isolate controls on burn probability. Landscape Ecology. 25: 79-94.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.