Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(479 KB)

Title: Cellulose I crystallinity determination using FT-Raman spectroscopy : univariate and multivariate methods

Author: Agarwal, Umesh P.; Reiner, Richard S.; Ralph, Sally A.

Date: 2010

Source: Cellulose. Vol. 17 (2010): p. 721-733.

Publication Series: Miscellaneous Publication

Description: Two new methods based on FT–Raman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band intensity ratio of the 380 and 1,096 cm-1 bands. For calibration purposes, 80.5% crystalline and 120-min milled (0% crystalline) Whatman CC31 and six cellulose mixtures produced with crystallinities in the range 10.9–64% were used. When intensity ratios were plotted against crystallinities of the calibration set samples, the plot showed a linear correlation (coefficient of determination R2 = 0.992). Average standard error calculated from replicate Raman acquisitions indicated that the cellulose Raman crystallinity model was reliable. Crystallinities of the cellulose mixtures samples were also calculated from X-ray diffractograms using the amorphous contribution subtraction (Segal) method and it was found that the Raman model was better. Additionally, using both Raman and X-ray techniques, sample crystallinities were determined from partially crystalline cellulose samples that were generated by grinding Whatman CC31 in a vibratory mill. The two techniques showed significant differences. In the second approach, successful Raman PLS regression models for crystallinity, covering the 0–80.5% range, were generated from the ten calibration set Raman spectra. Both univariate-Raman and WAXS determined crystallinities were used as references. The calibration models had strong relationships between determined and predicted crystallinity values (R2 = 0.998 and 0.984, for univariate-Raman and WAXS referenced models, respectively). Compared to WAXS, univariate-Raman referenced model was found to be better (root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) values of 6.1 and 7.9% vs. 1.8 and 3.3%, respectively). It was concluded that either of the two Raman methods could be used for cellulose I crystallinity determination in cellulose samples.

Keywords: Cellulose, crystallinity, Raman spectroscopy, FT–Raman, univariate analysis, multivariate analysis, PLS, X-ray, analytic chemistry, chemistry, wood chemistry, Fourier transform spectroscopy, spectrum analysis, correlation, cellulose I, partial least squares, band intensity ratio, standard error

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Agarwal, Umesh P.; Reiner, Richard S.; Ralph, Sally A. 2010. Cellulose I crystallinity determination using FT-Raman spectroscopy : univariate and multivariate methods. Cellullose. 17: 721-733.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.