Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(837 KB)

Title: Relating nanoindentation to macroindentation of wood

Author: Moon, Robert J.; Jakes, Joseph E.; Beecher, Jim F.; Frihart, Charles R.; Stone, Donald S.

Date: 2009

Source: Advanced biomass science and technology for bio-based products. [S.l.] : Chinese Academy of Forestry, c2009: p. 145-157.

Publication Series: Not categorized

Description: Wood has several levels of hierarchical structure, spanning from the configuration of growth-rings down to the configuration of the base polymers (cellulose, hemicellulose, and lignin). The bulk properties of wood result from the culmination of interactions over all length scales. Gaps presently exist in the fundamental knowledge relating the contribution of wood properties at each structural level to the resulting bulk properties. The advent of nanoindentation has facilitated mechanical property measurement at the cell wall layer; however, there is limited understanding of how and to what extent the properties at the cell wall level influence the bulk properties. This paper summarizes some preliminary work relating hardness measurement by nanoindentation to macroindentation. Nanoindentation was used to measure hardness within the cell wall S2 layer of radiata pine (Pinus radiata) latewood (LW) cells, whereas macroindentation was used to indent the same LW band from which the nanoindentation specimens were obtained. Meyer hardness measured via nanoindentation was found to be ~5 times larger than that measured by macroindentation. The differences in measured hardness between the two scales of indentation has been consider to result from differences in woody material volume fraction and the structure of the material being deformed. Additionally, the effects of a wood chemical modification treatment on the measured hardness for nanoindentation and macroindentation hardness demonstrated how changes in cell wall latewood properties propagate though to bulk hardness measurements of latewood.

Keywords: Radiata pine, mechanical properties, nanotechnology, nanostructured materials, measurement, plant cell walls, hardness, deformation, wood chemistry, nanoindentation, radiata pine, chemical modification of wood, modified wood, macroindentation, latewood

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Moon, Robert J.; Jakes, Joseph E.; Beecher, Jim F.; Frihart, Charles R.; Stone, Donald S. 2009. Relating nanoindentation to macroindentation of wood. Advanced biomass science and technology for bio-based products. [S.l.] : Chinese Academy of Forestry, c2009: p. 145-157.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.