Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.0 MB)

Title: Detection capacity, information gaps and the design of surveillance programs for invasive forest pests

Author: Yemshanov, Denys; Koch, Frank; Ben-Haim, Yakov; Smith, William

Date: 2010

Source: Journal of Environmental Management 91(12):2535-2546

Publication Series: Scientific Journal (JRNL)

Description: Integrated pest risk maps and their underlying assessments provide broad guidance for establishing surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest of interest or how these can be reduced. In this study we demonstrate how the somewhat competing notions of robustness to uncertainty and potential knowledge gains could be used in prioritizing largescale surveillance activities. We illustrate this approach with the example of an invasive pest recently detected in North America, Sirex noctilio Fabricius. First, we formulate existing knowledge about the pest into a stochastic model and use the model to estimate the expected utility of surveillance efforts across the landscape. The expected utility accounts for the distribution, abundance and susceptibility of the host resource as well as the value of timely S. noctilio detections. Next, we make use of the info-gap decision theory framework to explore two alternative pest surveillance strategies. The first strategy aims for timely, certain detections and attempts to maximize the robustness to uncertainty about S. noctilio behavior; the second strategy aims to maximize the potential knowledge gain about the pest via unanticipated (i.e., opportune) detections. The results include a set of spatial outputs for each strategy that can be used independently to prioritize surveillance efforts. However, we demonstrate an alternative approach in which these outputs are combined via the Pareto ranking technique into a single priority map that outlines the survey regions with the best trade-offs between both surveillance strategies.

Keywords: Info-gap, Sirex noctilio, Robustness, Opportuneness, Invasion model, Spatial simulation, Pareto frontier, Multi-criteria ranking

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Yemshanov, D.; Koch, F.H.; Ben-Haim, Y.; Smith, W.D. 2010. Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. Journal of Environmental Management 91(12):2535-2546.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.