Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(388 KB)

Title: Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions

Author: Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; Nelson, R.F.; Parker, G.G.; Radeloff, V.C.

Date: 2009

Source: Journal of Geophysical Research 114, G00E06: 13 p

Publication Series: Scientific Journal (JRNL)

Description: Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three-dimensional (3-D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3-D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3-D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3-D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; Nelson, R.F.; Parker, G.G.; Radeloff, V.C. 2009. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions . Journal of Geophysical Research 114, G00E06: 13 p. doi:10.1029/2008JG000883

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.