Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(320 KB)

Title: Relationships between migration rates and landscape resistance assessed using individual-based simulations

Author: Landguth, E. L.; Cushman, S. A.; Murphy, M. A.; Luikart, G.

Date: 2010

Source: Molecular Ecology Resources. 10: 854-862.

Publication Series: Journal/Magazine Article (JRNL)

Description: Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic structure. We used classical Wright-Fisher models and spatially explicit, individualbased, landscape genetic models to simulate gene flow via dispersal and mating in a series of landscapes representing two patches of habitat separated by a barrier.We developed amathematical formula that predicts the relationship between barrier strength (i.e., permeability) and the migration rate (m) across the barrier, thereby linking spatially explicit landscape genetics to classical population genetics theory. We then assessed the reliability of the function by obtaining population genetics parameters (m, FST) using simulations for both spatially explicit and Wright-Fisher simulation models for a range of gene flow rates. Next, we show that relaxing some of the assumptions of the Wright-Fisher model can substantially change population substructure (i.e., FST). For example, isolation by distance among individuals on each side of a barrier maintains an FST of 0.20 regardless of migration rate across the barrier, whereas panmixia on each side of the barrier results in an FST that changes with m as predicted by classical population genetics theory. We suggest that individual-based, spatially explicit modelling provides a general framework to investigate how interactions between movement and landscape resistance drive population genetic patterns and connectivity across complex landscapes.

Keywords: computer simulation, FST, gene flow, habitat fragmentation, isolation by distance, landscape genetics, partial barriers, population connectivity, spatial statistics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Landguth, E. L.; Cushman, S. A.; Murphy, M. A.; Luikart, G. 2010. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Molecular Ecology Resources. 10: 854-862.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.