Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(437 KB)

Title: Modeling current climate conditions for forest pest risk assessment

Author: Koch, Frank H.; Coulston, John W.

Date: 2010

Source: In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 609-620

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year normals and rarely incorporate up-to-date data. Furthermore, because they are constructed on a monthly rather than a daily time step, they do not directly measure simultaneous occurrence of multiple climatic conditions (e.g., days in the past year with appropriate temperature and adequate precipitation). Yet, the actual number of days—especially consecutive days—where multiple conditions are met could be significant for pest dispersal or establishment. For the sudden oak death pathogen (Phytophthora ramorum), we used National Oceanic and Atmospheric Administration daily weather station data to create current, national-scale grids depicting co-occurrence of multiple climatic conditions.

For each station, we constructed two count-based variables: the total number of days and the greatest number of consecutive days in a year where the station met several conditions (temperature, rain/fog, relative humidity). We then employed gradient plus inverse distance squared (GIDS) interpolation to generate grids (4-km2 resolution) of these variables for 5 years (2000-2004). The GIDS technique weights standard inverse distance squared interpolation using coefficients based on geographic location (x, y) and a spatial covariate such as elevation. Using these variables, we determined the GIDS coefficients for each output grid cell via Poisson regression on the 30 closest stations. We also performed model selection to ensure only significant variables contributed to the GIDS coefficients. We compared the GIDS approach to cokriging and detrended kriging using cross-validation and found similar accuracies among all three interpolation methods. We also compared the output grids to maps assembled from the PRISM data depicting the probability all conditions were met in a given year. As expected, we found differences in areas highlighted as suitable for P. ramorum establishment by the two methods. We suggest that using current weather data and calculating the variable of interest directly will provide more practical information for mapping forest pest risk.

Keywords: Climate, forest pests, GIDS, Phytophthora ramorum, risk, spatial interpolation.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Koch, Frank H.; Coulston, John W. 2010. Modeling current climate conditions for forest pest risk assessment. In: Pye, John M.; Rauscher, H. Michael; Sands, Yasmeen; Lee, Danny C.; Beatty, Jerome S., tech. eds. Advances in threat assessment and their application to forest and rangeland management. Gen. Tech. Rep. PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: 609-620.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.