Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(430 KB)

Title: Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species

Author: Reinhart, Kurt O.; Royo, Alejandro A.; Kageyama, Stacie A.; Clay, Keith.

Date: 2010

Source: Acta Oecologica. 36: 530-536.

Publication Series: Scientific Journal (JRNL)

Description: Canopy disturbances such as windthrowevents have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood.We characterized the densities of a soil-borne pathogenic oomycete (Pythium) and a common saprotrophic zygomycete (Mortierella) in nine pairs of forest gaps created by windthrows and adjacent forest understories. We determined the levels of Pythium necessary to cause disease by performing pathogenicity experiments using two Pythium species, a range of Pythium densities, and two common tree species (Acer rubrum and Prunus serotina) from the study sites. Three years post-disturbance, densities of Mortierella remained suppressed in soil from forest gaps compared to levels in intact forest understories while varying across sites and sampling dates. Pythium were infrequently detected likely because of soil handling effects. Expression of disease symptoms increased with increasing inoculum density for seedlings of P. serotina with each Pythium spp. having a similar effect on this species. Conversely, A. rubrum appeared resistant to the two species of Pythium. These results suggest that Pythium densities at sites where they were detected are sufficient to cause disease and possibly affect establishment of susceptible species like P. serotina. Because early seral environments have lower loads of the saprotrophic Mortierella, pathogen loads may follow a similar pattern, causing susceptible species to establish more frequently in those habitats than in late-seral forests. Forest disturbances that alter the disease landscape may provide an additional mechanism for explaining succession of temperate forests in addition to the shade-tolerance paradigm.

Keywords: community structure, disturbance effects, windthrow, soil-borne pathogens, density-dependent disease dynamics, disease susceptibility

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Reinhart, Kurt O.; Royo, Alejandro A.; Kageyama, Stacie A.; Clay, Keith. 2010. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species. Acta Oecologica. 36: 530-536.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.