Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(355 KB)

Title: Evaluation of a multiple-species approach to monitoring species at the ecoregional scale

Author: Manley, Patricia N.; Zielinski, William J.; Schlesinger, Matthew D.; Mori, Sylvia R.

Date: 2004

Source: Ecological Applications 14(1): 296-310

Publication Series: Scientific Journal (JRNL)

Description: Monitoring is required of land managers and conservation practitioners to assess the success of management actions. "Shortcuts" are sought to reduce monitoring costs, most often consisting of the selection of a small number of species that are closely monitored to represent the status of many associated species and environmental correlates. Assumptions associated with such shortcuts have been challenged, yet alternative approaches remain scant. We evaluated an approach that departs significantly from the approach of selecting a few representative species. We explored two primary assertions: (1) that a coordinated multiple-species monitoring effort that collects presence–absence data on a broad range of species is a robust alternative to a few intensive single-species efforts, and (2) that the vertebrate species expected to be detected using this approach are numerous and diverse enough to represent all vertebrate species. We simulated monitoring the vertebrate species pool on an existing sample grid across the 7 million ha of public lands in the Sierra Nevada (USA) ecoregion. Based on the use of eight standard presence–absence protocols, we estimated the number of vertebrate species (excluding fish) with an adequate number of sample points within their range to detect 20% relative change in the proportion of points with detections between two points in time. We estimated that adequate detections would be obtained for 76% of the 465 vertebrate species, including 83% of all birds, 76% of all mammals, 65% of all reptiles, and 44% of all amphibians. Detection adequacy varied among life-history and ecological groups, but >50% of the species were adequately detected in every group with the exception of three groups: rare species, endemic species, and species of concern (33%, 24%, and 47% of associated species adequately detected, respectively). A multiple-species monitoring approach represents an effective and feasible alternative to the challenges of large-scale monitoring needs by targeting the most basic of population data for a large number and breadth of species.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Manley, Patricia N.; Zielinski, William J.; Schlesinger, Matthew D.; Mori, Sylvia R. 2004. Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecological Applications 14(1): p. 296-310

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.