Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(370 KB)

Title: A comparison of two open source LiDAR surface classification algorithms

Author: Tinkham, Wade T.; Huang, Hongyu; Smith, Alistair M.S.; Shrestha, Rupesh; Falkowski, Michael J.; Hudak, Andrew T.; Link, Timothy E.; Glenn, Nancy F.; Marks, Danny G.

Date: 2011

Source: Remote Sensing. 3: 638-649.

Publication Series: Scientific Journal (JRNL)

Description: With the progression of LiDAR (Light Detection and Ranging) towards a mainstream resource management tool, it has become necessary to understand how best to process and analyze the data. While most ground surface identification algorithms remain proprietary and have high purchase costs; a few are openly available, free to use, and are supported by published results. Two of the latter are the multiscale curvature classification and the Boise Center Aerospace Laboratory LiDAR (BCAL) algorithms. This study investigated the accuracy of these two algorithms (and a combination of the two) to create a digital terrain model from a raw LiDAR point cloud in a semi-arid landscape. Accuracy of each algorithm was assessed via comparison with >7,000 high precision survey points stratified across six different cover types. The overall performance of both algorithms differed by only 2%; however, within specific cover types significant differences were observed in accuracy. The results highlight the accuracy of both algorithms across a variety of vegetation types, and ultimately suggest specific scenarios where one approach may outperform the other. Each algorithm produced similar results except in the ceanothus and conifer cover types where BCAL produced lower errors.

Keywords: LiDAR, algorithm, filtering, DTM, MCC, BCAL

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Tinkham, Wade T.; Huang, Hongyu; Smith, Alistair M.S.; Shrestha, Rupesh; Falkowski, Michael J.; Hudak, Andrew T.; Link, Timothy E.; Glenn, Nancy F.; Marks, Danny G. 2011. A comparison of two open source LiDAR surface classification algorithms. Remote Sensing. 3: 638-649.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.