Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(730 KB)

Title: Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams

Author: McManamay, Ryan A.; Webster, Jackson R.; Valett, H. M.; Dolloff, C. A.

Date: 2011

Source: Journal of the North American Benthological Society 30(1):84-102

Publication Series: Journal/Magazine Article (JRNL)

Description: Consumer nutrient cycling supplies limiting elements to autotrophic and heterotrophic organisms in aquatic systems. However, the role of consumers in supplying nutrients may change depending on their diet and their own stoichiometry. We evaluated the stoichiometry, N and P excretion, and diets of the dominant macroinvertebrates and fish at 6 stream sites to determine if the nutritional composition of food alters nutrient excretion. We used Sterner’s (1990) nutrient homeostasis model as a reference to gauge whether consumer nutrient excretion is influenced by diet. Body stoichiometry explained 61% of the variation in N:P excretion by macroinvertebrates but only 11% of the variation for fish. In both cases, the relationship was driven by 2 P-rich end-members, crayfish and mottled sculpin. Results of Akaike Information Criterion (AIC) analysis showed that family alone explained 71% of the variation in N:P excretion in macroinvertebrates and 31% of the variation in fish. Diet explained only 8% of the variation in both cases. Most consumers (9 of 11) had N:P excretion values that were well below predictions of Sterner’s model. Two taxa, crayfish and sculpin, had N:P excretion that overlapped the model’s predictions. Our results suggest that crayfish and sculpin may display strict homeostasis with respect to N and P and that their growth might be P-limited. Other consumers may be more flexible in their stoichiometry and not P-limited. We speculate that the extremely low excretion N:P measured for many consumers might have been the result of semiflexible homeostasis, inaccuracies in our assessment of dietary nutrients, growth-limiting nutrients other than N or P, or lack of egestion data. Our results suggest that crayfish and sculpin may alter N and P dynamics in streams by excreting low amounts of P relative to N compared to what is generally available in the water column.

Keywords: stoichiometry, excretion, nutrient cycling, stream, consumers

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


McManamay, Ryan A.; Webster, Jackson R.; Valett, H. Maurice; Dolloff, C. Andrew. 2011. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. Journal of the North American Benthological Society 30(1):84-102.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.