Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(4.6 MB)

Title: Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data

Author: Kane, Van R.; Bakker, Jonathan D.; McGaughey, Robert J.; Lutz, James A.; Gersonde, Rolf F.; Franklin, Jerry F.

Date: 2010

Source: Canadian Journal of Forest Research. 40: 774-787

Publication Series: Scientific Journal (JRNL)

Description: LiDAR measurements of canopy structure can be used to classify forest stands into structural stages to study spatial patterns of canopy structure, identify habitat, or plan management actions. A key assumption in this process is that differences in canopy structure based on forest age and elevation are consistent with predictions from models of stand development. Three LiDAR metrics (95th percentile height, rumple, and canopy density) were computed for 59 secondary and 35 primary forest plots in the Pacific Northwest, USA. Hierarchical clustering identified two precanopy closure classes, two low-complexity postcanopy closure classes, and four high-complexity postcanopy closure classes. Forest development models suggest that secondary plots should be characterized by low-complexity classes and primary plots characterized by high-complexity classes. While the most and least complex classes largely confirmed this relationship, intermediate-complexity classes were unexpectedly composed of both secondary and primary forest types. Complexity classes were not associated with elevation, except that primary Tsuga mertensiana (Bong.) Carriere (mountain hemlock) plots were complex. These results suggest that canopy structure does not develop in a linear fashion and emphasize the importance of measuring structural conditions rather than relying on development models to estimate structural complexity across forested landscapes.

Keywords: forest structure, forest canopy, LiDAR, remote sensing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kane, Van R.; Bakker, Jonathan D.; McGaughey, Robert J.; Lutz, James A.; Gersonde, Rolf F.; Franklin, Jerry F. 2010. Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data. Canadian Journal of Forest Research. 40: 774-787.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.