Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(5.8 MB)

Title: Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods

Author: Eskelson, Bianca N.I.; Temesgen, Hailemariam; Barrett, Tara M.

Date: 2009

Source: Canadian Journal of Forestry Research. 39: 1749-1765

Publication Series: Scientific Journal (JRNL)

Description: Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods. The models were developed and fit to data collected by the Forest Inventory and Analysis program of the US Forest Service in Washington, Oregon, and California. For predicting cavity tree and snag abundance per stand, all three NB regression models performed better in terms of mean square prediction error than the NN imputation methods. The most similar neighbor imputation, however, outperformed the NB regression models in predicting overall cavity tree and snag abundance.

Keywords: wildlife habitat, inventory methods, nesting cavities, forest mapping

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Eskelson, Bianca N.I.; Temesgen, Hailemariam; Barrett, Tara M. 2009. Estimating cavity tree and snag abundance using negative binomial regression models and nearest neighbor imputation methods. Canadian Journal of Forestry Research. 39: 1749-1765.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.